In differential calculus, the domain-straightening theorem states that, given a vector field on a manifold, there exist local coordinates such that in a neighborhood of a point where is nonzero. The theorem is also known as straightening out of a vector field.
The Frobenius theorem in differential geometry can be considered as a higher dimensional generalization of this theorem.
It is clear that we only have to find such coordinates at 0 in . First we write where is some coordinate system at . Let . By linear change of coordinates, we can assume Let be the solution of the initial value problem and let
(and thus ) is smooth by smooth dependence on initial conditions in ordinary differential equations. It follows that
and, since , the differential is the identity at . Thus, is a coordinate system at . Finally, since , we have: and so as required.